

Monday, October 24, 2016

SwissDecTX Transmitter Gateway Service Technical Overview 4.08

PRELIMINARY DOCUMENTATION – SUBJECT TO CHANGE

Starting with version 4.03, the SwissDecTX transmitter supports an optional gateway service,

licensed separately, which allow remote access to the transmitter from computers not directly

connected to the internet or from computers not running the Microsoft Windows operating system.

System Requirements for the SwissDecTX Transmitter Gateway Service:

- Windows Vista or later, any edition except Starter and Home editions.

- Windows Server 2008 or later, any edition except IA-64 (Itanium) editions.

The SwissDecTX Gateway service makes use of advanced system-provided facilities such as the

Transactional NTFS, and as such the Gateway Service requires at least one of the above

operating systems or newer versions. While the SwissDecTX transmitter itself works perfectly

well on Windows XP and Windows Server 2003 (theoretically, also on Windows 2000 or even

Windows 95 (!) as long as the .NET Framework 2.0 can be installed) the Gateway requires a

newer operating system. We prefer to run the gateway on Windows 7 SP1 or Windows 8.x 64-

bit, or a Server edition such as Windows Server 2008, 2008 R2 or Windows Server 2012 or

newer.

The remote computer(s) sending data to the transmitter through the Gateway can run any operating

system and the only requirement is that those machines are able to connect to a standard SMB

network share, with file create/read/write/delete ability. This requirement can be restated as the

ability to connect to and use a Windows file server on the LAN or WAN.

The entire system consists of the following:

 One computer running Microsoft Windows (for example Windows 7 or 8, 32-bit or 64-bit, or

some Windows Server version). This computer has internet access and the SwissDecTX

Transmitter 4.03 or later installed and configured, as well as the SwissDecTX Gateway 4.03

or later software. In the sequel, this machine will be referred to as the “gateway computer”

or simply the “gateway”. The gateway computer exposes a local network share that is

referred as the “network share”. Local in the sense that a folder local to the gateway

computer is shared, in other words this folder must reside on a local volume (and be

formatted using the NTFS file system).

 One or more remote computers with the ability to connect to a Windows file-server network

share to create, write and read to/from files. In the sequel, those machines will be referred

to as the “remote computers”. The remote computers run the salary application that wants

to transmit data to SwissDec, later called the “remote application”.

 A local area network or WAN connecting the remote machines to the gateway.

The protocol used by the SwissDecTX gateway is extremely simple and entirely file-based: the

remote application writes the XML declaration to the network share, and then writes a small text

file, called the “command file”, containing the commands to be executed by the gateway.

The SwissDecTX Gateway monitors the share constantly and detects the arrival of new command

files.

When such a new file is detected, the gateway software opens the file and executes the command(s)

it contains. Typical commands include sending a SwissDec declaration or retrieving the result of a

previously sent declaration.

The command files must follow a simple naming scheme to be detectable by the gateway software:

the file extension of the command file must be “.cmd”, the same extension used by Windows batch

files.

Please note, however, that the command files are *not* real batch files in the sense that the

gateway does not run them using cmd.exe, this convention was chosen to make it easier to test the

command files as they can actually be run directly from the command-line if necessary, if you add

C:\Program Files\SwissDecTX4 (or C:\Program Files (x86)\SwissDecTX4 on a 64-bit machine) to your

PATH.

The command-file syntax is as follow:

Blank lines and lines starting with a semicolon character (;) are ignored.

Lines containing commands to be executed must start with the keyword SwissDecTX

The keyword is followed by a space character and the Mode into which the command should run.

Valid modes include:

PING Check connectivity.

INTEROP Check interoperability.

INTEROP2 Check interoperability with operands.

TX Transmit declaration / synchronize contract.

STATUS Retrieve the status of a pending operation.

DATA Retrieve the data resulting from an operation.

EIV Create EIV file for manual transmission.

XSLT Run XSLT transformation (XML -> HTML)

Most of the modes requires additional parameters, for example the INTEROP mode (SwissDec inter-

operability test) requires the monitoring ID to be specified. The INTEROP mode thus accepts a

mandatory parameter, -i <monitoringid> which must be specified.

Let’s start with the simplest example: performing a connectivity check (SwissDec “ping” web service

command).

The ping command does not send additional data and does not require additional parameters.

The remote application will create a command file containing the command that directs the

SwissDecTX Gateway to call the Ping web service endpoint on the SwissDec server.

The name of the command file can be arbitrary, only the file extension must be “.cmd”. For this

example, let’s assume the remote application creates the command file under the name ping.cmd

The content of the command file will be as follow (highlighted text only)

SwissDecTX PING

The SwissDecTX Gateway software will detect the creation of this file and run the command it

contains, then will do two important things:

First, the command file itself will be renamed from ping.cmd into ping.end by the gateway software:

this allows the remote application to detect that the command(s) in this particular command file

have been carried over.

Since the actual command is carried-on by running the SwissDecTX.exe command-line utility, the

second important thing the gateway software does is write the console output of the command(s) to

a file named ping.log. Note that the name “ping” is only an example for this documentation, you can

name the command file however you like, as long as it is a valid Windows file name.

In summary, the remote application creates files with a .cmd extension, containing commands to be

carried on. The gateway software monitors the shared folder and detects the creation of *.cmd files.

The commands within *.cmd files are executed, and the command files themselves renamed to

*.end, while the console output is written to *.log

Since the gateway software launches the SwissDecTX command-line utility in the background to

execute the commands, the command syntax is exactly the same as the one of the command-line

utility.

You can type SwissDecTX from the installation folder to run the SwissDecTX.exe command-line

utility, which as built-in help and extensive parameter validation. You can use the -? command-line

option to display some help text about each mode, for example SwissDecTX TX -? Will display the

parameters required to send a declaration, with a description of the command and examples, you

can thus use the SwissDecTX.exe as a discovery and learning tool to get started with the gateway’s

command files.

Incidentally, the command syntax (lines starting with SwissDecTX) and the command file’s name

(ending in .cmd) makes it possible to actually execute the command files locally, to test them

manually.

The scheme seems simple enough but make no mistake: the gateway software will very reliably

monitor the shared folder (and all its subfolders) in real-time and never, ever miss a command file. If

the remote application creates multiple command files (there is no limit other than disk space to the

number of commands that can be queued) and the gateway computer is shut-down before all

commands are processed, all remaining commands (not yet renamed to *.end) will be processed the

next time the gateway is started.

The commands themselves, while requiring the SwissDecTX keyword at the start of each line, do not

allow to run arbitrary programs, only the <mode> and command-line parameters are actually

carried-over to the SwissDecTX.exe command-line utility. Finally, if the command-line utility

(SwissDecTX.exe) is modified or replaced, the gateway software will not run any command and will

immediately suspend its execution, so the command files do not represent a cheap way to execute

arbitrary code on the gateway machine.

Commands can be chained in the same command file. For example a command file with the

following content will direct the gateway to perform the two commands, ping and inter-operability

check, in sequence:

SwissDecTX PING

SwissDecTX INTEROP –i tester

http://msdn.microsoft.com/en-us/library/windows/desktop/aa365247(v=vs.85).aspx

The remote application should test for the presence of the *.end file and can then read the *.log file

with the console output.

Let’s consider a slightly more complicated example: sending a salary declaration.

To send a salary declaration, the remote application must first write the XML declarations in XML

files. Let’s assume that the XML declaration exists and that the file name is “Decl.xml”

The TX mode (which maps to SwissDec’s DeclareSalary web service endpoint) requires a number of

parameters, namely:

-dec Salary declaration XML file (input file name)

-res Result file (output file name)

-eiv Message sent file (output file name)

-ans Message received file (output file name)

-job Job key XML file (output file name)

You can get the list of required parameter by typing SwissDecTX TX -? from a command-prompt in

the SwissDecTX transmitter’s installation folder (of from any command prompt if you added this

folder to your PATH, which we recommend to do on dev machines).

We need to pass all five parameters to the command-line utility. Likewise, all five parameters need

to be written in the command file.

Let’s assume that we want to write the result of the operation in a file called Res.xml, then write the

message sent file (a signed but unencrypted SOAP envelope, a SwissDec requirement) to a file

named Eiv.xml, the server’s answer to Ans.xml and the job key, a token that is used later I the

SwissDec workflow to retrieve the deferred result of the declaration, to a file named Key.xml. Our

complete command-line thus becomes:

SwissDecTX TX -dec Decl.xml -res Res.xml -eiv Eiv.xml -ans Ans.xml -job Key.xml

Assuming that the Decl.xml file exists in the current folder, the command-line utility will carry the

operation and all output files will be written out and contain the expected results and data upon exit

of the utility.

In the gateway case, all you have to do is to write the same command into a file with a .cmd

extension, say transmit_test.cmd, and copy both Decl.xml, then the transmit_test.cmd file to the

network share monitored by the gateway. As in the command-line case, the file names passed on

the command-line are relative to the “current folder” i.e. the one where the .cmd file was written to.

It is important to write the command file last, as the gateway will begin processing the commands

immediately and the data files referred to by the commands, in this particular case the Decl.xml file,

must already be present and ready to be accessed immediately, or an error will occur.

After the command(s) executed, the gateway software will rename transmit_test.cmd into

transmit_test.end, and the application can then read transmit_test.log, Res.xml, Eiv.xml, Ans.xml

and Key.xml.

The remote application is responsible for the file cleanup: the gateway software cannot know for

sure when the application has retrieved the results, as such, all files must be erased by the remote

application once the transaction is complete.

Please note that the SwissDecTX transmitter, the SwissDecTX.exe command-line utility and the

SwissDecTX Gateway maps the SwissDec 4 workflow exactly. If you are not familiar yet with how

SwissDec operates regarding transmission and data retrieval, please read the relevant SwissDec

documentation and experiment with the SwissDecTX Test & Configuration tool as well as with the

SwissDecTX.exe command-line utility.

Transmitting data over the internet is not instantaneous, as such the remote application does not

need to poll for the *.end files too quickly. Ping and interop tests should run relatively fast but for

most other operations, one try every few seconds should be enough in most cases.

The only hard conventions regarding the SwissDecTX Gateway are:

- The file extension of the command files must be .cmd

- The file extension of a processed command file will be .end

- The console output of the command-line tool goes into a file with extension .log

- The gateway software sometimes creates temporary files with the extension .jnl

The .jnl (“journal”) files are used by the gateway to keep track of the progress in multi-commands

command files. This file enable the continuation of the command batch in case it was interrupted,

say because the gateway computer lost power or was restarted to install updates etc. Upon

resuming, the gateway will restart and only run unprocessed commands within a given multi-

commands command file that was already partially processed. The .jnl files are automatically

removed by the gateway software when a particular command batch (a .cmd file) has completed

execution.

Other than the above, you are free to organize and name the files as you see fit. In particular, you

can create subfolders within the share if you wish, or any naming scheme that suits your needs.

Some suggestions:

Name the command-file after the declaration ID if you generate those yourself, and prefix all the

input and output files with the declaration ID. For example, say your declaration ID is

ABCDEF0123456789.

You could name your files as follow:

ABCDEF0123456789_Declaration.xml

ABCDEF0123456789_Result.xml

ABCDEF0123456789_EIV.xml

ABCDEF0123456789_Answer.xml

ABCDEF0123456789_JobKey.xml

ABCDEF0123456789.cmd

This way, since your application obviously knows the declaration ID it generated itself, you don’t

have anything else to remember (besides the fact that a transaction is in progress). The application

can easily know what *.end file to look for, and the names of all the various files can easily be

inferred. Since the declaration IDs are supposedly unique, you won’t run into name conflicts and you

can queue as many declarations as needed if for some reason you need to perform a mass transfer.

Another suggestion:

Create a unique subfolder within the share, say named after the declaration ID as above:

Assuming the network share’s name is SwissDecTX and the Gateway computer’s name is GATEWAY,

create a folder whose path is \\GATEWAY\SwissDecTX\ABCDEF0123456789\

file://///GATEWAY/SwissDecTX/ABCDEF0123456789

Since the folder name will be unique, use fixed names for all files within the folder, such as for

example:

…\ABCDEF0123456789\Declaration.xml

…\ABCDEF0123456789\Result.xml

…\ABCDEF0123456789\EIV.xml

…\ABCDEF0123456789\Answer.xml

…\ABCDEF0123456789\JobKey.xml

…\ABCDEF0123456789\Commands.cmd

If you choose to create a subfolder to write both the data and the associated command file, you

don’t need to pass the subfolder name in the command-line parameters: the current directory, for a

given command set in a given .cmd file, is always assumed to be the one where the .cmd file was

written into.

One good (and very scalable) technique to name subfolders uniquely is to create a GUID/UUID and

use it as folder name. GUID/UUIDs can be created easily, for example on Windows you can use the

CoCreateGuid() or UuidCreate() functions, followed by a call to UuidToString() to create a really

unique string which can be used to name the folder. From .NET, Guid.NewGuid().ToString("N") will

do the trick. The main advantage is you don’t need to worry about uniqueness: any number of

GUIDs/UUIDs can be created independently without any risk of collision and without the need to

centralize anything such as when using an auto-increment column or some similar scheme. UUIDs

can be created from any environment, Java, Ruby, PHP, .NET, SAP and many others. See the

Wikipedia page describing UUIDs1 for more information.

Of course, you can ignore the above suggestions and come up with an entirely different scheme if

you wish; the only invariants you need to live with are the .cmd, .end and .log extensions.

Remember to always write the .cmd file last. Preferably, create it somewhere else then just copy it,

or create it in the network share but under a different name, for example *.tmp, if for some reason

the command file will take more than a couple of second to get written. When the file is ready, close

it then rename it from *.tmp to *.cmd, so when the gateway software detects it (which is

instantaneous) and the file itself and all its dependencies – like the declaration to be sent – are

already available and readable. If you create the .cmd file directly on the network share, be quick!

We advise you to just copy it to the share, after the related data files, as this is the safer option.

As long as you come up with a unique naming scheme, either unique individual file naming or unique

subfolder naming, you can queue as many concurrent operations as you want, even thousands of

them. The only practical limit is the disk space on the network share. The gateway software does not

have any hard limit on the number of command files it can detect and queue – i.e. thousands is

perfectly OK – and all the files will be processed as fast as possible.

You can also create command files that send multiple declarations. Say your application creates N

declarations, Decl1.xml, Decl2.xml, …, DeclN.xml and wants to send them all sequentially.

You could just as well create N command files, like send1.cmd, send2.cmd etc, each with a single TX

command like SwissDecTX TX -dec Decl1.xml –res Res1.xml … etc inside, or create a single command

file that contains one line per declaration:

SwissDecTX TX -dec Dec1.xml -res Res1.xml …

SwissDecTX TX -dec Dec2.xml -res Res2.xml …

1 http://en.wikipedia.org/wiki/Universally_unique_identifier

http://msdn.microsoft.com/en-us/library/windows/desktop/ms688568(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379205(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa379352(v=vs.85).aspx
http://en.wikipedia.org/wiki/Universally_unique_identifier
http://en.wikipedia.org/wiki/Universally_unique_identifier

.

.

.

SwissDecTX TX -dec DecN.xml -res ResN1.xml …

In both cases all declarations will be sent of course, but in the second case you have only one

.cmd/end file to worry about, and only one .log file to consider. Performance, however, is another

matter as the gateway can process multiple command files concurrently.

Multithreading / Multiprocessing

While the commands within a given command-file are guaranteed to be processed sequentially,

separate command files may be processed in parallel by the gateway. This has implications on the

workflow: if your application queues multiple command files that depend on each other’s output (for

example command file N+1 uses the output of command file N) then your application must send

command file N first, wait for its completion, then send command file N+1 if it uses the output of the

previous command, etc. If the application queue command files N and N+1 at the same time, with

command file N+1 depending on command file N’s output, and the gateway processes them

simultaneously, the commands in command file N+1 are almost guaranteed to fail as the processing

of command file N+1 will begin long before command file N has completed execution.

For maximum throughput of the gateway, use separate command files, a multi-core CPU with Hyper

Threading enabled and enough memory (RAM) to accommodate the handling of several

transmissions concurrently (and of course the fastest possible outbound connection speed!)

Checkpoints

After processing each line in a given command file, provided there is more than one, the gateway

will store checkpoint data in a small .jnl file to remember what command was just executed. If the

gateway is stopped for whatever reason in the middle of a command batch, it will be able to resume

and continue with the next unprocessed line. Good reasons for the gateway to be stopped is a

computer reboot due to installing updates, a loss of power, some hardware failure etc.

Note that loss of network connectivity is not an error that the gateway software itself will notice: all

commands will be processed but you will of course get error messages in the -res XML file produced

by the SwissDecTX transmitter. Your application must always read all output files to detect errors:

the gateway just runs commands, it has no knowledge of salary declarations or even SwissDec and

cannot make the difference between a declaration that cannot be sent because the network is

down, or because someone is born on February 31, or because its salary is negative. Only the

application can interpret the results and decide the course of action, for example retry a few times in

case of a network error, or ask the user to correct the data in case the SwissDec server rejected the

transmission.

Decoupled operations

The gateway entirely decouples the transmitter from the application: the remote application can

create a declaration and its associated command file and just copy them to the share and go on

perform some other tasks while the gateway software and the transmitter operates entirely

independently. The application only needs to remember what .cmd files (or which subfolders) it

created, as it needs to come back to the network share later to check if the command file(s) was or

were renamed to .end

Whenever the application wishes to, it comes back and look for the *.end file that indicates that the

transaction has completed on the gateway side, and that the results are ready for consumption. It

then read the output and acts according to the results found.

From the end-used point of view, the fact that the communication between the application and the

transmitter if done by the mean of disk files over a network makes no difference at all.

XML -> Formatted HTML

It should be noted that the SwissDecTX Transmitter has a built-in facility that transforms the XML

replies from the server, for example the plausibility, into ready-to-display HTML, with clickable

completion links etc, in a format that is fully admissible for SwissDec certification.

The SwissDecTX.exe command-line utility exposes this functionality through the XSLT mode so you

could very well create a .cmd file that runs the command-line tool in XSLT mode after you have

received the data from a previous call, to transform the XML replies to formatted HTML ready for

consumption.

A possible workflow could be as follow:

1) Run a TX command to send a declaration to the SwissDec distributor. If this step is successful (you

got a job key in return)

2) Run a STATUS command with the job key you got in step 1. If you get a ValidityPlausibilityChecking

status in the server reply, wait and retry step 2 until you get a valid answer (plausibility)

3) Run an XSLT command to transform the XML plausibility to HTML

4) Save all output files and erase all files pertaining to that transaction from the network share,

including the .end file, and remove the subfolder (if you opted for that solution).

This is exactly the workflow you’d have to do with the command-line tool or with direct API calls to

the transmitter using the File2FileXXX family of functions. The only difference is, in the above, “Run a

command” means copy the relevant XML input data and .cmd file to the network share, then loop

until you see the .end file, instead of “run the command-line tool” or “call the transmitter API”.

The general SwissDec workflow is exactly the same, the only real difference is how the transmitter is

invoked.

Tip: get familiar with the command-line utility. Several customers have used this tool to implement

their SwissDec-certified solution without a single direct API call. Once the transmitter is configured,

all the necessary operations can be performed from the command line tool, which uses disk-based

input and output files. The command-line tool is essentially a thin wrapper around the File2FileXXX

family of function in the transmitter’s API. The gateway software essentially extends this

functionality by enabling remote access.

Reliability and dependability

The SwissDecTX transmitter itself and its command-line utility were both extensively tested and

have been used in production for a long time (nearly five years at the time of this writing). Tens of

thousands of production salary declarations have been successfully sent using this transmitter from

hundreds of different sites. The gateway software uses the transmitter and command-line utility

virtually unmodified, thus it leverages the stability and robustness of those components.

The gateway service itself is entirely new, but relies on proven components to perform its services so

the risk of seeing new transmission issues or different behavior though the gateway is virtually non-

existent.

Once the basics are mastered, the other operations not covered on this guide (STATUS, DATA, EIV,

XSLT) are all straightforward but please feel free to write if you have any question!

Installation of the gateway software (preliminary)

The SwissDecTX Transmitter Gateway is implemented as a Windows Service (aka NT Service) that

runs in the background without any user-interface. You can easily configure the gateway service to

start automatically when Windows starts.

Since the gateway is still in preliminary form, there is no monitoring facility at this time, and the

installation and configuration must be performed manually.

At the moment and for convenience, the gateway service executable (SwissDecTX.Gateway.exe) is

deployed by the SwissDecTX Transmitter 4.03 installer, and you will find the service .exe in the

installation folder, namely C:\Program Files\SwissDecTX4 or C:\Program Files (x86)\SwissDecTX4 on

a 64-bit machine.

You need administrative rights on the computer to install the SwissDecTX transmitter and its

gateway. Assuming you ran the SwissDecTX.Setup4.exe silent installer already…

…the installation consists in:

1) Create the folder which will be shared on the network

2) Actually share the folder

3) Create a registry key to tell where this folder is

4) Configure the service

Please follow the below steps carefully:

On the computer with internet access where you install the transmitter and its gateway:

1) Login using an account with administrative rights

2) Create a folder, for example (and recommended location) C:\SwissDecTX

3) In Windows Explorer, right-click the C:\SwissDecTX folder just created and click Properties

in the context menu

4) Click the Sharing tab and the Advanced Sharing button

5) In the Advanced Sharing dialog, check “Share this folder” at the top, add a meaningful

comment, like “SwissDecTX Transmitter Gateway Network Share” then click the Permissions

button underneath the comments field.

6) In the Permissions dialog, give Full Control to Everyone on the folder:

7) Click OK to close the permissions dialog, then click OK to close the Advanced Sharing dialog.

You should see the Network Path in the Properties dialog. Do *not* close the dialog yet.

8) Click the Security tab, then click the Edit button:

9) In the Permissions for SwissDecTX dialog, click Add…

10) In the Select Users Or Groups dialog, type Everyone in the “Enter the object names to select

and click the Check Names button, then click OK to close this dialog:

11) Grant Full control to the folder the Everyone group just added, click OK to close the

Permissions dialog, then click Close to close the SwissDecTX Properties dialog:

Congratulations: you just created a network share, and gave access to it to everyone, including

unauthenticated users. Keep in mind that only the C:\SwissDecTX folder just created is affected by

the sharing and security changes just made. Depending on the nature of the remote computers, you

may be able to tighten the security on this folder, but for now let’s just make things work.

Selecting the input folder

(this section will soon be superseded by GUI controls in the Test & Configuration utility)

The next thing that we need to do is to create a registry key to tell the gateway service where to look

for command files. There is no user-interface at the moment to perform this operation as the

gateway is still at an early stage, you thus need to enter the value “manually”.

There are two options: the first is to create a .reg file with the following content:

For Windows 64-bit:

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\ARSD\SwissDecTX4\Gateway]

"MonitoredFolder"="C:\\SwissDecTX"

For Windows 32-bit

Windows Registry Editor Version 5.00

[HKEY_LOCAL_MACHINE\SOFTWARE\ARSD\SwissDecTX4\Gateway]

"MonitoredFolder"="C:\\SwissDecTX"

Then double-click the .reg file to enter the data.

Alternatively, you can use the registry editor (regedit.exe) and navigate to

HKEY_LOCAL_MACHINE\SOFTWARE (on a 32-bit machine) or

HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node (on a 64-bit machine)

Create a Key named “ARSD”

Within ARSD create a Key named “SwissDecTX4”

Within SwissDecTX4 create a Key named “Gateway”

Within Gateway create a Value (REG_SZ) named “MonitoredFolder” equal to C:\SwissDecTX

At this point you need to install the SwissDecTX 4.03 transmitter if not done already, by running the

SwissDecTX.Setup4.exe silent installer program (this is a nearly-silent installer designed to be

embedded within your own setup, so it only displays a minimal used-interface consisting in a

progress dialog and nothing else). If no error message gets displayed then the transmitter was

successfully installed.

You now need to configure the transmitter and makes sure it works. In particular, you need to

configure the server’s URL, install and select the three SwissDec certificates, select the Demo license,

pass the Quick Test and the Inter-operation test on the next tab, as well as successfully send the

ICHAGCompany.xml file that comes with the transmitter. Once the transmitter works as expected,

proceed with the next steps. All necessary files can be found in the SwissDecTX 3.02 retail package,

the current production version that you can find on www.swissdectx.ch

The last step is to configure the SwissDecTX Gateway service.

NT Services normally run in special identities like LocalSystem, LocalService or NetworkServices to be

able to perform their duties. In our case, we want the service to have access to the folder we created

and also to the SwissDecTX Transmitter 4.03 configuration, which is stored per-user.

As such, we *must* run the service in the installing user’s identity.

Click the Start button and type View local services. In the installed services list, locate

“SwissDecTX Transmitter Gateway”:

Right-click and click Properties. In the properties dialog, set the Startup Mode to “Automatic

(delayed start):

Do *not* click the Start button yet, but press the “Log On” tab instead, then click “This Account” and

enter the username/password of the installing user (your’s, that’s it).

 Note that this same user must configure the transmitter.

You can optionally set the Recovery options on the Recovery tab, then go back to the General tab,

click the Apply button to save your changes, then click the Start button.

If everything goes well, the service control manager should soon report that the service has started:

You can now test the gateway locally from a command prompt: Go to the C:\SwissDecTX folder

which is our “inbox” and run the dir command to convince yourself it is empty.

Type the following commands exactly, where <return> means the Enter key and <F6> means the F6

function key:

copy con ping.cmd<return>

SwissDecTX PING<return>

<F6><return>

You have about 10 seconds, after the first <return>, to type the SwissDecTX PING command, hit

return again and hit F6 then return once more to close the file, so be quick!

Wait a couple of seconds and type dir again: Your ping.cmd file should have been renamed to

ping.end and a new file ping.log should have been created, with the console output of the

command-line tool. During the call to the SwissDec web service, the .log file will exist but the

command file will still have its .cmd extension. The gateway renames the file only after the

command has executed, independently of the outcome of the command, and flushes and closes the

.log file so you can access it the see the console output of the command-line utility that was

launched in the background.

Congratulations !

Now you can connect to the \\YOURCOMPUTER\SwissDecTX share from anywhere on the LAN/WAN

and start remotely writing data files and command files to use the SwissDecTX transmitter remotely!

Note: the above tutorial was made on Windows 7. The screens may vary slightly on Windows Vista

or Windows 8/8.1 but the idea is the same: after having successfully installed, configured and tested

the SwissDecTX Transmitter 4.03…

…create a folder somewhere, preferably C:\SwissDecTX, give Everyone full access to it at the file

system level, share it, give Everyone full access to the network share, create the registry key that

tells the gateway where the folder is, configure the gateway to start automatically and under the

identity of the installing user and, finally, start the gateway and you are ready to test it.

64-bit computing

The SwissDecTX Transmitter itself is a C# .NET component and is architecture agnostic: it will run as a

32-bit component if invoked from a 32-bit process, and as a 64-bit component if instantiated from a

64-bit process (that’s the magic of .NET just-in-time compilation).

The SwissDecTX Gateway and the SwissDecTX command-line tool are native components written in

C++ and ship in 32-bit and 64-bit flavor within the SwissDecTX.Setup4.exe installer. On 64-bit

operating systems, the SwissDecTX installer will deploy native 64-bit components. 32-bit software

can still instantiate the transmitter as before and/or run the 64-bit command-line utility without

noticing a difference. The gateway service will run natively in 64-bit in the background. On 32-bit

computers only 32-bit components are deployed.

Is 64-bit really needed? Well, it depends: if you are using the gateway in a low to medium

transmission volume environment then the answer is probably no. It a high volume, high throughput

enterprise environment, the answer is a definite yes!

file://///YOURCOMPUTER/SwissDecTX

Performance and scalability

The SwissDecTX Gateway is designed for maximum performance. It will take advantage of multiple

cores and Hyper Threading automatically to process multiple command files concurrently. Given

adequate CPU and RAM resources, the actual throughput of the gateway on a 64-bit computer is

most likely to be limited by the computer’s network I/O abilities, i.e. the ability of remote machines

to write and read from the network share, and the ability of the gateway to upload to, and download

from, the SwissDec servers over the internet connection.

Advanced registry settings

The Gateway supports a few additional registry entries as follow. These are for advance use only,

none of them is required for typical installations of the SwissDecTX Gateway.

DisableNtfsTransactions REG_DWORD Set to 1 to disable the use of

NTFS transactions. Use to

troubleshot issues with some

networking software, when the

monitored folder is a remote

share from the point of view of

the Gateway software itself,

and the server OS on the

remote share is not Windows.

Note that, while possible, is it

not recommended to monitor a

remote folder: make sure the

monitored folder and the

transmitter are on the same

computer.

MaxConcurrency and
TargetOversubscriptionFactor

REG_DWORD Those parameters control the

level of concurrency inside the

Gateway. The default values

should do just fine for typical

installations, but you could use

them for, say, restrict the

Gateway to only 1 CPU core, for

example. See

Concurrency::Scheduler on

MSDN for details.

DisableParallelCommandFilesProcessing REG_DWORD Set to 1 to process command

files sequentially. Use for

debugging or of the destination

server complains that you send

too many concurrent requests.

https://msdn.microsoft.com/en-us/library/dd984036.aspx
https://msdn.microsoft.com/en-us/library/dd984036.aspx

Troubleshooting:

The gateway does not appear to work:

- Verify that the transmitter is working normally (properly configured, access to the internet…)

using the SwissDecTX Test & Configuration tool and the SwissDecTX.exe command-line

utility.

- Verify that the gateway service is running (autostart), and started under the identity of the

user who installed and configured the transmitter. This is super-important.

- Verify that the user account under which the gateway service is running has full

read/write/delete (full control) access to the designated folder.

- Verify that the registry key that tells the folder’s path is at the right place and points to the

correct folder (soon to be superseded by a GUI interface).

The gateway works for PING and INTEROP commands, but you get a “SwissDecTX: A valid license is

required to perform this operation!” message when trying to send a declaration using the TX and

the supplied SwissDecTX.Demo.lic:

- The gateway service is not running in the identity of the current user and does not find the

configuration parameters. See point 2 above (the super important one!)

- You are not actually using the Demo license (if you are an existing customer using your

production license).

The gateway appears to react slowly when playing with command files from Windows Explorer:

- Explorer is sometimes slow to pick up the changes, just press F5 to refresh the view ;-)

While playing with multiple simultaneous command files to test the gateway, you got the

following error: “SwissDecTX: Logging exception! (Access to the path 'C:\ ProgramData\

SwissDecTX4\ TransmissionLog\ etc etc .zip' is denied.)”:

- You are using the transmitter’s built-in logging facility and you ran into a name conflict on

the log because you sent the exact same declaration multiple time from different command

files at once, and the declaration has a fixed ID in the <ct:RequestID> tag. Since the gateway

processes command files in parallel up to the number of CPU cores, it is possible that two or

more of your commands got started in the same millisecond, resulting in duplicate log name

entries as the request ID and transmission time are both used to make the log files unique.

Set the request ID to ‘*’ in your test declaration (<ct:RequestID>*</ct:RequestID>) so the

transmitter generates a unique request ID on-the-fly for you every time, or use different

declarations, each with their own unique ID as it should be in actual transmissions (you

should never use the same request ID twice for any reason, as per SwissDec specs).

While playing with multiple simultaneous command files to test the gateway, you got the

following error: “The process cannot access the file because it is being used by another process.”

- You used the same output file names in one or more of the parameters of several command-

files. Since command files are processed in parallel, the transmitter ran into conflicts

because of name collisions in the same folder. Please make sure to use either a unique

subfolder name for each command file and associated data, or to use unique declaration file

names and unique output file names, if you put multiple data files and command files in the

same folder. Please refer to the suggested naming schemes earlier in this document.

You can of course get support at info@swissdectx.ch

mailto:info@swissdectx.ch

Near future

The final version will probably be packaged in a separate installer, and the transmitter’s Test &

Configuration tool will be augmented with a new tab where the installing / managing user will be

able to control the gateway (set the account, start/stop it, change the folder, and get some statistics

like the number of command files processed, number errors and the like).

Keep in mind that the gateway software is still preliminary at this stage: if you encounter a bug,

report it – if possible with clear repro steps - and it will be fixed.

Some remarks on the SwissDec workflow

The SwissDec workflow requires to get data from one call (for example the job key) and use it in

subsequent calls to retrieve further data. Sometimes the server does not reply readily with a final

answer but instead indicates that the data is still being worked on (for example

ValidityPlausibilityChecking). The application must wait and retry and the retry policy is entirely in

the hands of the application as the gateway is stateless and (deliberately) ignorant: once a particular

command file and the command(s) it contains has completed, the gateway renames the command

file and completely forgets about it. In particular the gateway does not retry on your behalf, this is

the application responsibility to decide if retrying is needed or appropriate, and what the retry

interval should be. In the long run, this is the better choice: the gateway is kept simple (read: bug

free!) and your application stays in control of the high-level workflow.

In some cases, the results can take up to 15 days to get prepared by the server, so the entire

SwissDec workflow is slow-paced: send something, come back the next day to see if it was accepted,

wait for the answer that should come back on the expected date specified by the server.

Of course the transmitter gives you immediate feedback on the technical aspects: was the XML file

correctly formatted? Was the file successfully uploaded? But the server-side processing of the data

can take minutes, hours or days depending on the cases.

Gateway management and monitoring

The gateway still being in development, there is no management or monitoring mechanism at this

point (planned for inclusion into the existing SwissDecTX Test & Configuration tool). The gateway

being a Windows Service, it can be managed (started and stopped) using the Windows Service

Control Manager (SCM): the display name of the service is “SwissDecTX Transmitter Gateway” and

the internal service name is “SwissDecTX”, so it can be managed like any other service from a

command prompt:

net start SwissDecTX

and

net stop SwissDecTX

will start and stop the gateway, respectively. The Service Control Manager2 can also be invoked

programmatically and Windows Services can be managed using Windows Management

Instrumentation3 (WMI) so the SwissDecTX Gateway is manageable, just not by its own tooling yet.

2 http://msdn.microsoft.com/en-us/library/windows/desktop/ms685150(v=vs.85).aspx
3 http://msdn.microsoft.com/en-us/library/aa394602(v=vs.85).aspx

http://msdn.microsoft.com/en-us/library/windows/desktop/ms685150(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394602(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394602(v=vs.85).aspx

